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ABSTRACT 

An indirect radar reflectivity assimilation scheme was developed in the framework 

of the Weather Research and Forecast model (WRF) three-dimensional data 

assimilation system (WRFDA-3DVAR). The retrieved rainwater and water vapor 

derived from radar reflectivity were assimilated into WRFDA-3DVAR. The 

corresponding observation operators for rainwater and saturated water vapor were 

developed and incorporated into WRFDA-3DVAR. The moisture and cloud 

condensate control variables were pseudo relative water vapor mixing ratio and 

rainwater mixing ratio. A squall line case occurred on 13 June 2002 was used to assess 

the indirect assimilation scheme. For this case, the assimilation of reflectivity data 

improved short-term precipitation forecasts up to 6 hours. The assimilation of 

reflectivity data increased the moisture and rainwater in the cloud, and improved the 

forecasts of the location and intensity of the convective system. 
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1. Introduction 

The radar reflectivity observations have been extensively used to provide the 

analysis for high-resolution numerical forecast by cloud analysis (e.g. Albers et al. 

1996 ; Hu et al. 2006) or data assimilation techniques (e.g. Xiao et al. 2007; Aksoy et 

al. 2009). The radar data assimilation capability with Weather Research and Forecast 

(WRF) model three-dimensional variational data assimilation system 

(WRFDA-3DVAR) has been developed and evaluated in the National Center for 

Atmospheric Research (NCAR). To assimilate the radar reflectivity, WRFDA-3DVAR 

takes the approach to use total water as the moisture control variable and a partition 

scheme to split it into water vapor, cloud water and rainwater. The scheme and its 

performance evaluation were reported by Xiao et al. (2007a-b). The results from an 

IHOP case of 12-13 June 2002 showed that quantitative precipitation forecast (QPF) 

was improved over the experiments without radar data assimilation. 

Though the positive results have been reported, this approach does not work well 

when a “dry” background is used because of the use of a linear Z-qr equation as 

observation operator and the warm rain partition scheme (Sugimoto et al. 2009). The 

“dry” background means there is no or almost no rainwater in the background 

whereas reflectivity from hydrometeors exists. It occurs when WRFDA-3DVAR uses 

a first guess that has location errors in precipitation forecast, or is initiated from a 

coarse resolution analysis. In this case, the linear Z-qr equation is either not valid (the 

background rainwater is zero) or produces the larger gradient to rainwater which may 

result in a difficult convergence of the cost function. To make the warm rain partition 

scheme works well, a first guess is requested which can turn on the “on-off” switches 

in the warm rain process. So in some studies using WRFDA-3DVAR, physical 

initialization (Yang et al. 2006) or cloud analysis procedures (Sugimoto et al., 2009) 

were carried out before the radar reflectivity assimilation. In addition, as note by Xiao 

et al. (2007a), the addition of the ice phase in the hydrometeor partitioning scheme 

was needed to broaden its application into winter season storms in which cold rain 

process may play an important role. 

Radar reflectivity observation has been applied in cloud analysis schemes to adjust 
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the atmosphere variables, such as water vapor and cloud condensates (e.g. Albers et al. 

1996; Hu et al. 2006; Sugimoto et al. 2009), or to derive water vapor or relative 

humidity (Sokol et al. 2009; Caumont et al. 2010; Ikuta et al. 2011), which is then 

assimilated. Some researchers (e.g. Yang et al. 2006; Sugimoto, et al., 2009) replaced 

the background humidity by (nearly) saturated moisture directly. It is a reasonable 

assumption that humidity in cloud is saturated where the reflectivity is large than a 

threshold. We take this assumption to produce the pseudo saturated water vapor 

observation. 

In this study, we apply this assumption to produce the pseudo-saturated water vapor 

and use it in the cost function as an observation. Instead of using the water vapor 

information in physical initialization or cloud analysis schemes (e.g. Albers et al. 

1996; Hu et al. 2006; Yang et al. 2006; Sugimoto, et al., 2009), it is used in a 

variational data assimilation scheme to optimally adjust the first guess toward the 

derived water vapor. The assimilation of the water vapor provides a favorite 

environment that supports the convection. In addition, the retrieved rainwater, which 

can be obtained by the Z-qr equation (Sun et al. 1997), is assimilated. The assimilation 

of the retrieved rainwater doesn’t require a wet background, and also give a good 

rainwater analysis (Wang et al. 2011). We call this scheme as the indirect approach for 

radar reflectivity assimilation. The scheme is developed within WRFDA-3DVAR, and 

tested with a convection case. The next section describes the method. The results are 

shown in Section 3. A summary is in the final section. 

 

2. Method 

2.1. WRFDA-3DVAR 

The WRFDA-3DVAR adopts the incremental VAR formulation that is commonly 

used in operational systems. The incremental approach is designed to find the analysis 

increment that minimizes a cost function defined as a function of the analysis 

increment by using a linearized observation operator. 

( ) b oJ J J= +v    
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where ( )H= −o
bd y x  is the innovation vector and H'  is the linearization of the 

observation operator H  used in the calculation of d . 

 

2.2. Assimilating retrieved rainwater 

The retrieved rainwater is derived from the nonlinear Z-qr relation (Sun and Crook, 

1997): 

)(log1021 rqccZ ••+= ρ                                   (2) 

Since the rainwater is the analysis variable, the observation operator used here is 

the standard bilinear interpolation function in WRFDA-3DVAR. 

 

2.3. Assimilating derived water vapor 

We assume that the relative humidity in cloud is 100% where radar reflectivity is 

higher than a threshold, so the water vapor observation equals the saturated water 

vapor in the background. In this paper the threshold is set to 30 dBZ. The error of 

water vapor observation is specified by the relative humidity error with a reduced 

value of 20%. The relation between rainwater and relative humidity in cloud 

(hereafter rq rh− relation) is examined by WRF model output in Section 3.4.  

The observation operator H  is, 

v sq rh q= ⋅                                           (3) 

where vq  and sq  stand for specific humidity and saturated specific humidity of 

water vapor, respectively. 

The linear observation operator H'  is: 

v s sdq drh q rh dq= ⋅ + ⋅                                  (4) 
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Using equation (5)-(6), equation (4) can be written as 
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It is physically reasonable that the perturbation in humidity affects pressure and 

temperature in conditions that moisture is close to saturation (Bannister, 2008). 

We assume the perturbation in pressure is caused by the perturbation in temperature 

through state equation, 

p RTρ=                                            (8) 

The final linearized observation operator H'  is simplified as, 
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3. IHOP case and experiment configuration 

3.1. IHOP case  

A squall line that occurred in Oklahoma and Kansas on 12–13 June 2002 during 

IHOP_2002 field experiment is chosen for this study. This study focuses on a 

northeast-to-southwest-oriented squall line from the Kansas and Oklahoma border to 

the Texas Panhandle, initiated at around 2100 UTC 12 June 2002. Isolated convective 

cells formed from the Kansas and Oklahoma border to the Texas Panhandle along a 

dryline at 2100 UTC 12 June. At 0000 UTC 13 June, a squall-line structure was well 

developed in the reflectivity field, with the intense convection in a triple-point area 

near the Kansas and Oklahoma border. It then moved southeastward and dissipated 

after 0900 UTC 13 June 2002.  
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3.2 Forecast model 

The WRF-ARW model is used as the forecast model (Skamarock et al. 2008). The 

WRF is the next generation mesoscale model designed to serve both operational 

forecasting and atmospheric research applications. The model uses a third order 

Runge-Kutta time integration, third to fifth order advection operators, and 

split-explicit fast wave integration conserving both mass and energy. The model 

physics options include the rapid radiative transfer model (RRTM) longwave radiation, 

Dudhia shortwave radiation, Yonsei University (YSU) PBL schemes, and Thompson 

microphysics in all the experiments. 

3.3 Background error 

In this study, the preconditioned control variables are streamfunction, the 

unbalanced components of velocity potential, temperature, surface pressure, pseudo 

relative humidity and rainwater mixing ratio. The background error covariance matrix 

is estimated in the 13 June 2002 IHOP case using the ensemble method. A 20-member 

ensemble of convection-resolving simulations is initiated at 1200 UTC on 12 June 

2002 at 4 km resolution. The 12 h forecasts at 0000 UTC 13 June 2002 are used to 

obtain the statistics. The length scale of the first Empirical Orthogonal Function (EOF) 

mode of the control variables (streamfunction, the unbalanced components of velocity 

potential, temperature, pseudo relative humidity and rainwater mixing ratio) is, 115.6, 

90.8, 16.5, 36.6 and 7.7 km, respectively. For the rainwater the first 7 EOFs account 

for 99% of the total variance.  

3.4 Observations 

The method of Doppler radar data quality control and other preprocessing 

procedures are the same as that described in Xiao et al. (2007a-b). The surface 

observations from IHOP_2002 field experiment are used. The assumed the rq rh−  

relation in cloud is examined by the ensemble forecasts that are used to generate the 
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background error statistics at 0000 UTC June 2002 in section 3.3. It is found that the 

relative humidity is generally greater than 95%. An example of the rq rh−  relation 

from the output of the first ensemble is shown in figure 1. 

 

Figure 1. The example of rq rh−  relation from the model forecast. 

3.5 Experiment 

Table 1. Experiments and descriptions 

Experiment  Description 

CON No data assimilation 

CRV Conventional observation with radial velocity 

ALL Conventional observation with radial velocity and reflectivity 

Three numerical experiments (Table. 1) are conducted to examine the impact of 

radar observations on analysis and precipitation forecast. The control experiment 

(CON) is the 9 hour WRF simulation with initial and boundary conditions 

interpolated from Eta model 40 km analysis at 2100 UTC 12 June 2002. For the data 

assimilation experiments (CRV and ALL), the starting time is 0000 UTC 13 June 

2002. The 3 hour forecast in the experiment CON is used as the first guess in the data 

assimilation experiments. In the experiments CRV and ALL, we only assimilate the 

radial velocity in the rain region defined by the reflectivity values larger than or equal 
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to 15 dBZ. 

4. Results 

4.1. Single reflectivity observation test 

Before conducting the real data experiments, a single observation data assimilation 

test is carried out to estimate the spread of the observation by the background error 

statistics. The single reflectivity observation test uses 3 hour forecast at 0000 UTC 13 

June 2002 as the first guess, and the assimilated reflectivity is at (34.314°N, 

124.003°E; 11th model level). The innovation of the single reflectivity was assigned 

10 dBZ, which is converted to rainwater about 3.0 g/kg.  

 

Figure 2. Increment of (a) rainwater, (b) water vapor, (c) potential temperature, and (d) 

wind vector. The incremental of wind and potential temperature is scaled by 1000.0.  

Figure 2 shows the 3DVAR analysis increment responses at 11th model level. First 

of all, the rainwater mixing ratio and water vapor mixing ratio have positive analysis 

increments centered at the observation location (Figure 2a-b). The positive increment 
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arises because the two variables are underpredicted in the background. The water 

vapor spreads broader than the rainwater since the length scale of the water vapor is 

larger than the rainwater. The impact of temperature perturbation is considered in the 

observation operator for water vapor assimilation, so that a weak positive potential 

temperature increment is also found (Figure 2c). Through the wind and temperature 

statistical relation in the background covariance, the wind response is obtained 

(Figure 2d). To summarize, in the indirect assimilation scheme, a single reflectivity 

observation will produces the multivariate analysis. 

4.2. The IHOP case 

4.2.1 Hourly precipitation prediction 

We first examine the impact of radar data assimilation on the hourly precipitation 

prediction. Figure 3 shows the stage IV precipitation observations and hourly 

precipitation forecasts from the two data assimilation experiments at the forecast 

hours of 2, 4, and 6. Among the three experiments, the experiment ALL (Figure 3j-l) 

is closest to the observed precipitation (Figure 3a-c). Both the experiments CON 

(Figure 3d-e) and CRV (Figure 3g-i) produce simulations that move too fast to the 

south for the precipitation band over the north Oklahoma. This location error exists in 

the background and is not corrected by assimilating the radial velocity alone. The 

simulations in CON and CRV also show more scattered precipitations rather than the 

banded convection as in the observations. In the experiment ALL, the assimilation of 

conventional data along with radial velocity and reflectivity give the best precipitation 

location and intensity forecast (Figure 3j-l) of the major convective band, suggesting 

that the indirect reflectivity assimilation method is effective to correct the location 

error in the background field. 

Figure 4 shows The Equitable Threat Score (ETS) of the three experiments between 

the hourly forecast precipitation and the observed. Consistent with Figure 3, the 

experiment ALL improves the ETS up to 6 hours. RV has a positive impact in first 4 

hours for the ETS at threshold 1.0- and 5.0 mm. For both CRV and ALL, the ETS 
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decreases in the second hour which seems to indicate there is a spin up adjustment in 

the first 2 hours 

 

 

 

 

Figure 3. Hourly accumulated precipitation. (a)-(c) Stage IV observation, (d)-(f) CON, 

(g)-(i) CRV, (j)-(l) ALL. The left column is at 0200 UTC 13 June, the median column 

is at 0400 UTC 13 June, and the right column is at 0600 UCT 13 June 2002. 
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Figure 4. ETS of three experiments at threshold of 1.0 mm and 5.0 mm. 

 

4.2.2 The analysis increments 

Figure 5 shows the increments of the experiment ALL. From Fig. 5a, it is found 

that assimilation of RV produces a convergence line in the analysis increment, which 

is helpful for the maintenance of the convection. The wind increment results in 

potential temperature increment (Fig. 5b) through the wind-temperature balance 

relation in the background covariance. As noted before, the forecasted convection in 

the first guess has a southward location bias at the assimilation time. The correction of 

the location error is clearly shown in the rainwater increment (Fig 4d). In the analysis 

produced by the experiment ALL, the water vapor and rainwater analysis is more 

consistent with the wind analysis, thus have large impact on the forecast. 

 

5 mm/h 

1 mm/h 
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Figure 5. Increment of the experiment ALL. (a) wind vector and vertical velocity, (b) 

potential temperature, (c) water vapor, and (d) rainwater  

 

5. Summary 

The radar data assimilation capability with WRFDA-3DVAR has been developed 

and evaluated by Xiao et al. (2007a). To assimilate the radar reflectivity, 

WRFDA-3DVAR takes the approach to use total water as the moisture control 

variable and a partition scheme to split it into water vapor, cloud water and rainwater. 

The results from an IHOP case of 12-13 June 2002 showed that quantitative 

precipitation forecast was improved over the experiments without radar data 

assimilation (Xiao et al. 2007b). Though the positive results have been reported, this 

approach does not work well when a “dry” background is used because of the use of 

the linear Z-qr equation as observation operator and the warm-rain partition scheme 

(Sugimoto et al. 2009). 

In this study, an indirect radar reflectivity assimilation scheme was developed 
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within WRFDA-3DVAR system. The retrieved rainwater and water vapor derived 

from radar reflectivity were assimilated into WRFDA-3DVAR. The corresponding 

observation operators for rainwater and saturated water vapor were developed and 

incorporated into WRFDA-3DVAR. The moisture and cloud condensate control 

variables were pseudo relative water vapor mixing ratio and rainwater mixing ratio. 

Before conducting the real data experiments, a single observation data assimilation 

test was carried out to estimate the spread of the observation by the background error 

statistics. The results indicated that in the indirect assimilation scheme, a single 

reflectivity observation produced the multivariate analysis. A convection case 

occurred on 13 June 2002 was used to assess the indirect assimilation scheme. For 

this case, the assimilation of reflectivity data improved short-term precipitation 

forecasts up to 6 hours. The assimilation of reflectivity data increased the moisture 

and temperature in the cloud, and improved the forecasts of the location and intensity 

of the convective system.
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